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Abstract. We study the primary DNA structure of four of the most completely sequenced human
chromosomes (including chromosome 19 which is the most dense in coding), using non-extensive statistics.
We show that the exponents governing the spatial decay of the coding size distributions vary between
5.2 ≤ r ≤ 5.7 for the short scales and 1.45 ≤ q ≤ 1.50 for the large scales. On the contrary, the exponents
governing the spatial decay of the non-coding size distributions in these four chromosomes, take the values
2.4 ≤ r ≤ 3.2 for the short scales and 1.50 ≤ q ≤ 1.72 for the large scales. These results, in particular
the values of the tail exponent q, indicate the existence of correlations in the coding and non-coding size
distributions with tendency for higher correlations in the non-coding DNA.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Da Systems obeying scaling laws
– 87.14.Gg DNA, RNA

1 Introduction

During recent years numerous studies on the statistics of
genomic sequences have demonstrated various degrees of
complexity in the primary structure of DNA. In particu-
lar, Peng et al. in 1992 demonstrated the existence of long
range correlations using the “DNA walk” model [1]. Sim-
ilar conclusions were reached by Li et al. [2] and Voss [3]
using the 1/f spectrum and later by studies on the size
distribution of Purine (Adenine, Guanine) and Pyrimidine
(Thymine, Cytocine) clusters in coding and non-coding re-
gions of different organisms [4,5]. Other studies manifested
long range correlations and power laws in the primary
structure of DNA using a variety of statistical methods
ranging from wavelets to linguistic approaches [6].

In recent studies, one of the present authors (AP) and
coworkers have shown that the long range distributions
of Pyrine and Pyrimidine clusters in the non-coding re-
gions of higher eucaryotes are related to similar long range
distributions present at a higher level of genomic organ-
isation: the level of coding and non-coding alternating
regions [7].

Non-extensive statistical mechanics is particularly fit-
ted to describe complex structures which present long
range correlations, power laws and fractality [8]. In partic-
ular, non-extensive statistics have been used to describe
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successfully complex spatiotemporal structures in diverse
fields such as high energy physics, turbulence, biologi-
cal systems, anomalous diffusion, classical and quantum
chaos, interacting particle systems and reactive dynam-
ics [9].

Classical statistical mechanics uses the Boltzmann
Gibbs (BG) Entropy, SBG, defined as:

SBG = −
W∑

i=1

pi ln pi (1)

to describe the properties of systems at equilibrium. In
equation (1), pi denotes the probability of the ith micro-
scopic state and the average runs over the total number
of states W . This BG entropic form can not successfully
describe systems in which self-organisation, long range fea-
tures and scaling are observed. As a generalisation of equa-
tion (1), Tsallis and coworkers [10] have introduced the
non-extensive entropy, defined as:

Sq =

1 −
W∑

i=1

pq
i

q − 1
, for q �= 1 (2)

where q is the non-extensivity exponent. Note that for
q = 1 the classical BG statistics (Eq. (1)) is recovered and
thus departure of the exponent q from the value 1 signals
departure from BG statistics.
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In relation to non-extensive statistics, long range be-
haviour may be obtained by a non-linear equation ex-
pressed as [11]:

dξ

ds
= −κqξ

q, for (κq ≥ 0, q �= 1) . (3)

In particular, for q > 1 long range behaviour is manifested,
while for q = 1 the well known exponential law is obtained.
The solution of equation (3) is:

ξ(s) = [1 − (1 − q)κq(s − 1)]1/(1−q)
, for (κq ≥ 0, q > 1)

(4)
= exp(−κ1(s − 1)), for (κ1 ≥ 0, q = 1)

with initial condition ξ(1) = 1. Thus for q > 1 a long
range law (power law) is obtained, while for q = 1 a short
range (exponential) law emerges.

For phenomena which exhibit crossover between two
different regimes in the short and long length scales, a
further phenomenological generalisation of equation (3)
maybe introduced by addition of terms carrying different
powers [11]. The simplest one carries only one additional
term and is:

dξ

ds
= −κqξ

q − (λr − κq)ξr, for (q ≤ r). (5)

Note that equation (3) is recovered for κq = λr (∀r). The
solution of equation (5) can not be written in a simple
form but it may be shown that it consists of two distinct
power law regions, one governed by the exponent q and
one by the exponent r [11].

In Figure 1 we present the size distribution of cod-
ing and non-coding DNA sequences in chromosome 16.
To avoid local fluctuations running averages are con-
sidered over 15 Base Pairs (bps). For clarity only the
first 1000 points are shown. The maximum size of cod-
ing regions is of the order of 7000−8000 bps (reaches
∼ 20 000 bps for chromosome 19) while the maximum sizes
of the non-coding regions reach ∼ 108 bps. The coding
size distributions are rich in small segments of the order
of 100−110 bps and then fall fast, while the non-coding
ones have a similar maximum in the small scales and fall
relatively slower. For comparison we also present the size
distribution of chromosome 17, in Figure 2, in double log-
arithmic scale where the entire s-range is shown.

Comparing Figures 1 and 2 we note that the size dis-
tribution of non-coding DNA, has a complex form but we
may clearly distinguish two regions: one region at the short
length scales which is bell-shaped and which mostly de-
scribes the introns (non-coding regions within genes) and
one region at the larger scales which contains a long tail
and which describes mostly the non-coding intergenic re-
gions. It is thus natural, at the phenomenological level,
to use equation (5) for the description of the complex
shape of the size distribution of non-coding DNA hoping
to capture these two trends, the introns and the intergenic
regions.

In the current study we use non-extensive statistics to
study globally the size distributions of coding and non-
coding sequences in the human genome which is now near
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Fig. 1. Running average over 15 points of the size distribution
of coding and non-coding DNA in chromosome 16. Only sizes
of up to 1000 bps are shown.
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Fig. 2. The size distribution of non-coding DNA in chromo-
some 17 in a double logarithmic scale (all data).

completion. We have selected to study four of the most
complete human chromosomes including chromosome 19
which contains the highest percentage of coding. In the
next section we concentrate on the primary structure of
the human genome and we give details on the particular
data we use. In Sections 3 and 4 we present the analysis of
the size distribution of coding and non-coding DNA, re-
spectively. We conclude by summarising our main results
and discussing some open problems.

2 The human genome data

Although officially the human genome project is an-
nounced to be near completion, in the international EMBL
and GenBank genomic data bases the sequence data de-
posited varies from 98.91% for chromosome 17 to 43.1%
for chromosome Y. The unknown base pairs are usually
denoted by the letter N = (unknown base pair) and they
are either isolated or appear in clusters. The meaning of
N is not unique. It might denote a base pair which resists
to sequencing methods completely or partially. Resisting
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partially means that partial information on the base is
known, for example being a Purine or a Pyrimidine. An-
other case is that the various laboratories which verify the
sequencing may not agree on this base pair.

In the current project we analyse the complete primary
structures of human chromosomes 6, 16, 17 for which the
N percentage is the smallest and also chromosome 19,
which contains the highest percentage of coding DNA,
3.8%. The sequenced percentage presented in the data
bases and the coding percentage of these are shown in
Table 1. After downloading the chromosomes we isolate
the coding and non-coding segments and calculate the re-
spective size distributions for each one of them. A rep-
resentative plot is shown in Figure 2. Due to the heavy
fluctuations in the data we prefer to work with the cumu-
lative distributions P̃ (s) defined as:

P̃ (s) =
∫ ∞

s

P (l)dl (6)

where P (l) is the usual distribution of coding or non-
coding regions of size l. In general, due to summation the
cumulative distributions have better statistical properties
than the usual distribution functions while they keep the
main data trends. Notice that, if the distribution P (l) has
the exponential (short range) form its cumulative P̃ (s) will
also have the exponential form. If the distribution func-
tion P (l) has a power law form with exponent −1 − µ as
in equation (7), then the cumulative distribution will have
a power law form with exponent −µ (see equation (7)),

P (l) ∼ l−1−µ =⇒ P̃ (s) =
∫ ∞

s

l−1−µdl

= s−µ, 0 ≤ µ ≤ 2. (7)

Cumulative diagrams of the four coding and non-coding
cumulative size distributions are shown in Figures 3 and 4,
respectively. The non-extensive analysis of these distribu-
tions follows in the next two sections.

3 Sizes of coding DNA sequences

As we have already seen in Figure 1 the coding size distri-
butions have a bell-shape and their tails in the large scales
fall relatively fast. To give a quantitative account for the
decay of the distribution tails we plot the cumulative size
distributions in Figure 3 (solid lines).

To describe the shape of the four curves we use the phe-
nomenological non-extensive description of equation (5)
and the corresponding curves are also shown in the same
figures (dashed lines). The fit is performed by numeri-
cally solving equation (5) since its exact solution is only
known for very specific values of q = 0, 1 as shown in refer-
ence [11]. We scan the parameter space (q, r, κq, λr), with
step sizes (0.005, 0.1, 0.00001, 0.00001) respectively and
we determine the parameter values which best fit the DNA
data (both in the short and long size scales). The theo-
retical lines approximate well the data. The exponents q

Table 1. Non-extensive exponents and parameters describing
the coding size distributions.

Chromo- Sequenced Coding q r κq λr µ =

some % % 1/(q − 1)

6 97.86 1.03657 1.50 5.2 0.018 0.00012 2.00

16 88.81 1.67416 1.45 5.7 0.017 0.00009 2.22

17 98.91 2.48184 1.45 5.4 0.018 0.00010 2.22

19 87.43 3.39768 1.50 5.6 0.018 0.00012 2.20

which describe the tails of the distributions vary between
1.45 < q < 1.50 for the four chromosomes and their spe-
cific values are given in Table 1. The non-extensive expo-
nent q corresponds to power law tails of the form equa-
tion (7) with exponent µ given by

µ = −1/(1 − q). (8)

Thus the tails of the coding size distributions present short
range correlations, since µ ≥ 2. The exponent r which
expresses the small scale characteristics, takes values be-
tween 5.2 < r < 5.6 for these chromosomes. Similar re-
sults have also been observed for the other human chro-
mosomes. The similarity of the two exponents in the four
chromosomes indicate that the same (or similar) dynami-
cal, evolutionary processes have created the coding parts
of all chromosomes during evolution. This dynamics must
be of conservative type in short time scales, since coding
DNA changes very slowly (behaves as an almost-closed
system) and this is consistent with short range correla-
tions [7].

4 Sizes of non-coding DNA sequences

The cumulative size distributions of the non-coding DNA
in the four chromosomes are shown in Figure 4 (solid
lines). We observe that the four distributions have as com-
mon characteristic a long tail which can be expressed in
the form of a pure power law [7]. In the smaller scales the
behaviour is characterised by a different exponent which
is very similar for the four distributions.

To describe the shape of the four curves we use the phe-
nomenological non-extensive description of equation (5)
and the corresponding curves are shown in the same fig-
ures (dashed lines). The fit was performed numerically
as in the previous section. The theoretical lines are very
faithful approximations to the data. The exponents q
which describe the long tails of the distributions are very
close for the four chromosomes and their corresponding
values are given in Table 2. Their values vary between
1.50 < q < 1.72. The non-extensive exponent q corre-
sponds to a power law of the form equation (7) with ex-
ponent µ being within the bounds 0 ≤ µ ≤ 2, which in-
dicates long range correlations. These values of µ can be
verified by directly measuring the tail slopes in Figure 4.
In the case of chromosome 19, which (up to now) contains
the highest coding percentage amongst all human chro-
mosomes, the value of µ calculated through equation (8)
is equal to 2, which is border line case between short and
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Fig. 3. The cumulative size distributions of coding DNA in chromosomes 6, 16, 17 and 19 (solid lines) and the non-linear fits
using equation (5) (dashed lines).
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Fig. 4. The cumulative size distributions of non-coding DNA in chromosomes 6, 16, 17 and 19 (solid lines) and the non-linear
fits using equation (5) (dashed lines).
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Table 2. Non-extensive exponents and parameters describing
the non-coding size distributions.

Chromo- q r κq λr µ =

some 1/(q − 1)

6 1.65 3.2 0.00009 0.00120 1.54

16 1.72 2.7 0.00021 0.00124 1.39

17 1.59 2.7 0.00021 0.00118 1.69

19 1.50 2.4 0.00018 0.00124 2.00

long range correlations. On the other hand, the exponent
r which expresses the small scale characteristics, takes val-
ues between 2.4 < r < 3.2 for these chromosomes. Similar
results have also been observed for all other human chro-
mosomes.

The different small and large scale behaviour observed
in the size distribution of the non-coding indicates that
different evolutionary mechanisms are involved in the for-
mation of small non-coding segments (which are usually
found as introns in the genes) and in the large non-coding
areas, or intergenic regions which are found between genes
and between families of genes. The intergenic regions are
extended non-coding regions which can support extensive
(massive) influx and outflux of genomic material. Thus
the ensemble of intergenic regions acts as an open system
which supports exchange with the environment. In open
systems, out of equilibrium, power laws and long range
spatial correlations emerge naturally via non-extensive or
edge of chaos evolutionary dynamics. Open aggregating
systems, with influx mechanisms similar to the ones in-
volved in genomic evolution and which lead to long range
spatial correlations are presented in reference [7]. On the
other hand, the non-coding segments found within genes,
introns, are less supportive to external influences because
often they include functional strings. Thus they behave
more like closed systems and their evolutionary paths and
stationary state statistics are expected to be similar to
coding DNA. Further studies are needed to clarify to what
extent the short and long scale behaviour found in the
non-coding DNA are related to the intron and intergenic
region statistics.

5 Conclusions

We have studied the size distribution of all known coding
and non-coding sequences in human chromosomes 6, 16, 17
and 19. The first three were selected as representatives of
the most completely sequenced chromosomes while chro-
mosome 19 has the highest, up to date, coding percentage.
We have found that the spatial decay of the non-coding
size distributions is consistent with non-extensive statis-
tics as expressed by the non-linear equation (5). We have
observed two distinct regions in the non-coding: one large
scale region, related to the intergenic non-coding DNA
which presents a power law exponent 1.5 ≤ q ≤ 1.72, and
a second short scale region related to the introns (non-
coding DNA within genes) which presents a power law

exponent r > 2.4. The correlation exponents observed in
the coding size distributions are between 1.45 ≤ q ≤ 1.50.
This is consistent with earlier observations of correlations
in the size distributions of higher eucaryotes [6,7]. All
other human chromosomes demonstrate similar character-
istics.

A more detailed analysis could involve the use of more
terms with different exponents in equation (5), in order
to capture more details such as the exponent which gov-
ern non-coding distances between families of homologous
genes (they may be governed by one of the current expo-
nents, q or r, or by a third one). Also, the study of the
statistics of genes and intergenic regions separately may
indicate different characteristic exponents, which emerge
as a result of different evolutionary paths.

It is true that today the human chromosomes may be
close to full sequencing but their complete annotation will
take much longer. This means that there are still coding
sequences which are not discovered within the genome.
Thus we expect that with the advancement of DNA an-
notation, which is the next major step in genomics after
sequencing, we will be able to give more precise, final val-
ues to the exponents q and r for the human genome. Also
the study in parallel of the genomes of other organisms,
as they become sequenced and annotated, will allow for
a comparative analysis of genomic data between different
classes of organisms.

The authors would like to thank Prof. C. Tsallis for suggesting
this approach and Prof. K. Trougkos for helpful discussions.
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